REDEEMER'S UNIVERSITY, EDE

COLLEGE OF POSTGRADUATE STUDIES

COURSE CODE: CIT828

COURSE TITLE: Internet Technology

ASSIGNMENTS:

Difference between connectionless and connection in TCP/IP

Draw the layers on TCP/IP & OSI model

Compare and Contrast IPv4 & IPv6

Difference between packets, data and frame

SUBMITTED TO

Dr. S. A. Adepoju

SUBMITTED BY:

PETER Agnes Aderonke

1. Differences between Connectionless and Connection-Oriented Communication in

Connection-Oriented Communication (e.g., TCP):

TCP/IP

- A connection is established before any data is transferred.
- Ensures reliable transmission using acknowledgments, sequencing, and retransmission.
- Data arrives in order and without duplication.
- Examples: HTTP, FTP, SMTP over TCP.

Connectionless Communication (e.g., UDP):

- No prior connection is established.
- Data is sent without guarantee of delivery, order, or integrity.
- Faster but unreliable.
- Examples: DNS, VoIP, Streaming over UDP.

Feature	Connection-Oriented (TCP)	Connectionless (UDP)
Setup Required	Yes	No
Reliability	High (error checking & ACKs)	Low
Speed	Slower	Faster
Ordering of Packets	Guaranteed	Not guaranteed
Protocol Example	TCP	UDP

2. TCP/IP vs OSI Model Layers

TCP/IP Model: This consists of 4 layers which are:

- Application Layer
- Transport Layer

- Internet Layer
- Network Access Layer

OSI Model: This consists of 7 layers which are:

- i. Application Layer
- ii. Presentation Layer
- iii. Session Layer
- iv. Transport Layer
- v. Network Layer
- vi. Data Link Layer
- vii. Physical Layer

OSI Model

APPLICATION LAYER

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

NETWORK LAYER

DATALINK LAYER

PHYSICAL LAYER

TCP/IP Model

APPLICATION LAYER

TRANSPORT LAYER

INTERNET LAYER

NETWORK ACCESS LAYER

3. Comparison Between IPv4 and IPv6

Feature	IPv4	IPv6
Address Length	32 bits (4 bytes)	128 bits (16 bytes)
Address Format	Decimal (e.g., 192.168.1.1)	Hexadecimal (e.g., 2001:0db8::1)
Header Size	20 bytes	40 bytes
Number of Addresses	~4.3 billion	3.4 x 10 ³⁸
NAT Usage	Required	Not required
Security	Optional (via IPSec)	Mandatory (via IPSec)
Configuration	Manual or DHCP	Auto-configuration (Stateless)
Broadcast	Supported	Not Supported (uses multicast)

4. Differences Between Packets, Data, and Frames

Term	Description	
Data	The raw payload generated by the application layer (e.g., a file, message).	
Packet	A formatted unit of data at the network layer (includes IP header).	
Frame	A packet encapsulated with data link layer headers and trailers.	

References

- Forouzan, B. A. (2017). *Data Communications and Networking* (5th ed.). McGraw-Hill Education
- Kurose, J. F., & Ross, K. W. (2021). *Computer Networking: A Top-Down Approach* (8th ed.). Pearson
- Tanenbaum, A. S., & Wetherall, D. J. (2013). Computer Networks (5th ed.). Pearson
- Cisco. (2024). IPv6 Essentials. Retrieved from https://www.cisco.com
- IETF. (2017). *Internet Protocol, Version 6 (IPv6) Specification*. RFC 8200. https://datatracker.ietf.org/doc/html/rfc8200
- Stallings, W. (2020). Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Pearson